
www.ajhg.org The American Journal of Human Genetics Volume 78 June 2006 903

Multilocus Association Mapping Using Variable-Length Markov Chains
Sharon R. Browning
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I propose a new method for association-based gene mapping that makes powerful use of multilocus data, is
computationally efficient, and is straightforward to apply over large genomic regions. The approach is based on
the fitting of variable-length Markov chain models, which automatically adapt to the degree of linkage disequilibrium
(LD) between markers to create a parsimonious model for the LD structure. Edges of the fitted graph are tested
for association with trait status. This approach can be thought of as haplotype testing with sophisticated windowing
that accounts for extent of LD to reduce degrees of freedom and number of tests while maximizing information.
I present analyses of two published data sets that show that this approach can have better power than single-
marker tests or sliding-window haplotypic tests.
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Although results that are based on simulated and real
data have been mixed, it is generally appreciated that
multilocus methods have higher potential for powerful
detection of trait-marker associations than do single-
marker methods.1–3 However, this potential has not yet
been fully realized because of difficulties balancing de-
grees of freedom or number of tests with maximal ex-
traction of information.

I propose a new approach that is based on inhomo-
geneous variable-length Markov chains (VLMCs). These
are higher-order Markov chain models in which the
length of memory of the process depends on the context.
Thus, in regions of high linkage disequilibrium (LD) be-
tween markers, the models will have a longer memory,
whereas, in regions of low LD, the memory will be short.
I fit these graph models using haplotype data from all
individuals and then test for association between trait
data and graph-edge counts. The focus in this study is
on case-control traits, but I consider quantitative traits
in the “Discussion” section.

My proposed method has several advantages. It is easy
to apply, with no need to choose a haplotype-window
size or to select tagging markers. The method automat-
ically balances degrees of freedom and number of tests
with maximal information extraction, which results in
high power to detect association. The results are simple
to interpret and robust to low haplotype frequencies.
There is flexibility to choose different types of associa-
tion tests and to adjust for covariates. The method has
the potential for efficient implementation and applica-
tion to whole-genome scan data (hundreds of thousands
of markers).

In the remainder of this section, I give a brief review
of existing multilocus methods, with focus on unresolved
issues that the proposed method can help to resolve. The

“Methods” section describes the VLMC model frame-
work, gives an algorithm for fitting the model to genetic
data, and outlines the testing procedure. In the “Results”
section, I present results from analysis of two published
data sets, demonstrating the power of my method. In
the “Discussion” section, I provide ideas for extension
of the method to unphased data and for the analysis of
quantitative traits and adjustment for covariates.

The standard approach to multilocus case-control anal-
ysis is haplotype analysis, typically with use of an ex-
pectation-maximization (EM) algorithm to account for
uncertain haplotype phase. Haplotype frequencies can
be inferred4 and then used in various types of association
tests, or a likelihood ratio test can be used that incor-
porates the EM algorithm.5 Some related approaches,
such as multilocus scoring,6 do not make use of phase
information and are thus computationally more efficient.
To have a test that is robust (i.e., gives correct type I
error rates, even in the presence of low haplotype fre-
quencies), it is common to apply permutation testing, in
which the trait values are permuted and the test statistic
is recalculated a large number (usually thousands) of
times. Alternative approaches for ensuring robustness of
the test include dropping or combining haplotype cate-
gories with low counts, which also reduces degrees of
freedom of the test, or the use of Fisher’s exact test,
provided the number of haplotype categories is small
enough for this to be computationally feasible.

In assessing a small number of markers in a region of
high LD, it is sensible to include all markers in a sin-
gle haplotype test. Complexities arise when a large can-
didate gene, an extended region under a linkage peak,
or a whole chromosome from a genome-association scan
is considered. LD typically follows a complex pattern,
so it is unclear which markers should be considered
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Figure 1 VLMC model for a region containing three haplotype
blocks. Solid arrows represent SNP allele 1; dashed arrows represent
SNP allele 2. Edges to be tested are marked “T.”

jointly in a haplotype analysis. Although a block struc-
ture is often seen in haplotype data, the blocks do not
capture the full picture, with some haplotypes extending
over several blocks,7 and definitions of haplotype blocks
can be somewhat arbitrary.

A sliding-window approach is commonly used to ap-
ply haplotype analysis over a large region. One chooses
a window size (generally small, for computational rea-
sons) and slides it along the region of interest, calculating
a test statistic in each window.8 For example, if a window
of size 5 is chosen, markers 1–5 will make up the first
haplotype test, markers 2–6 the second, and so on. This
approach does not adapt to the degree of LD, which can
vary greatly throughout a region. If the window size is
too small for the degree of LD, information is lost,
whereas, if the window size is too large, excessive noise
is introduced. An exhaustive approach can be taken, in
which all window sizes (up to some maximum) are con-
sidered,9 with adjustment for multiple testing by per-
mutation. Although this brute-force approach has po-
tential, it is currently unfeasible except for small max-
imum-window sizes. A Markov chain–Monte Carlo al-
gorithm (MCMC) can be used to adapt window sizes
on the basis of extent of LD for haplotype-phase estima-
tion,10 and perhaps such an approach could be adapted
for association testing, but it would be computationally
intensive.

Cladistic11 and haplotype-similarity12 methods test for
clustering of similar haplotypes within the samples of
cases and controls. More-complex developments of these
ideas include decay of haplotype sharing,13 which uses a
hidden Markov model (HMM) for haplotype ancestry to
develop a likelihood-based approach to haplotype shar-
ing, and a coalescent-based cladistic approach,14 which
uses MCMC to sample from the space of possible reali-
zations of the coalescent. On large genomic regions, these
methods still face the issue of determining which markers
to consider simultaneously. For example, a sliding-win-
dow approach has been used with cladistic analysis.15

Several other, more-complex methods for multilocus
association analysis exist. In general, these approaches
are computationally intensive and often require substan-
tial user input and sophisticated interpretation. They may
be most useful as a follow-up for significant results found
using simpler methods.

A graphical models approach16,17 fits graphical Mar-
kov models jointly to the marker and trait variables. A
parsimonious model is found, and dependencies between
the trait and markers are of interest. This type of ap-
proach can be extended to genomewide studies by using
windows to break the genome into small regions on the
basis of LD.18 Graphical Markov models are similar
to VLMCs, in that they involve Markov properties (con-
ditional independence) between variables. Graphical
Markov models have less intrinsic reliance on variable

(marker) order than do VLMCs, but they cannot allow
the memory (i.e., choice of variables on which a con-
ditional probability is based) to depend on the state of
some of those variables. Moreover, fitting these models
by maximum likelihood is computationally expensive.

Also close in spirit to my proposed method are meth-
ods based on HMMs. A first-order Markov chain can
be applied to dependencies between haplotype blocks,
with MCMC used to find optimal block divisions.19 Al-
ternatively, one can model the ancestral haplotype state—
that is, whether a region on a haplotype is descended
from the founder chromosome on which the disease mu-
tation first arose—as a first-order Markov chain along
the chromosome.20

VLMCs have some important advantages over
HMMs.21 With an HMM approach, it is necessary to
prespecify the structure of the model, which often in-
volves making many simplifying assumptions about pro-
cesses of which little is known (e.g., the Markov struc-
ture for the ancestral haplotype state20). Also, to fit the
HMM model, it is generally necessary to use an iterative
approach such as MCMC, which is computationally ex-
pensive and requires careful supervision to ensure con-
vergence. In contrast, VLMCs do not require explicit
modeling yet are flexible enough to closely approximate
HMMs and can be fitted using heuristic methods that
are fast and automatic.

VLMCs are not unknown to the statistical genetics
field, since they been used in haplotype-phase reconstruc-
tion.22 With the use of VLMCs, my proposed method
avoids the problem of choosing an appropriate window
size, clusters haplotypes to improve power, and employs
a computationally efficient heuristic algorithm that does
not require sophisticated user input.

Methods

In VLMC models, the “memory” of a Markov chain is allowed
to depend on the history of the chain.21,23 For example, con-
sider a two-state variable–memory-length model with the fol-
lowing properties:
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Figure 2 A, Tree graph constructed using the haplotype data in table 1. Circles represent nodes, and the values in them represent level
and node identifier within level; for example, “3.2” denotes node 2 at level 3. A solid edge between nodes at levels i and represents allelei � 1
1 at SNP marker i; a dashed edge represents allele 2. Numbers above edges represent haplotype counts. Thus, 137 over the edge between 3.3
and 4.4 represents 137 haplotypes that have allele 2 at the first SNP, 1 at the second SNP, and 1 at the third SNP. Although directional arrows
are not shown, a left-to-right direction is implied. B, The graph from figure 2A after merging. Nodes 3.1 and 3.3 in figure 2A have been merged,
as have all nodes at level 5. Notation is as described for panel A. Edges to be tested are marked with “T.”

Figure 3 Model fitted to the cystic fibrosis region-coded data.
Each of the various line patterns represents an allele code (alleles A–
H25). The nodes are shown as circles, with area proportional to the
total count for the node.

P(X p xFX p 1,X ,X ,…) p P(X p xFX p 1) ,t t t�1 t�2 t�3 t t t�1

P(X p xFX p 2,X ,X ,…)t t t�1 t�2 t�3

p P(X p xFX p 2,X ) ,t t t�1 t�2

where

P(X p xFX p 2,X p 2)t t t�1 t�2

( P(X p xFX p 2,X p 1) .t t t�1 t�2

This chain has a memory of length 1 if the most recent state
( ) takes the value 1, whereas it has a memory of length 2Xt�1

if the most recent state takes the value 2. In my application,
the variable Xt represents the allele at marker t.

A model for alleles at markers along a chromosome must
necessarily be inhomogeneous, because transition probabilities
and memory length vary from one position to another. An
inhomogeneous VLMC can be represented by a directed acyclic
graph. Figure 1 shows an example of the graph of a model of
a region composed of haplotype blocks. Note that the pro-
posed method does not require the existence (or prespecifica-
tion) of a haplotype-block LD structure. (In figs. 2–7, the di-
rectionality of the graph is not shown, but it is implied [from
left to right].) See also figures 3 and 5, which show models fit
to real data.

A VLMC model captures the LD structure in the genetic
data and allows us to test for associations with a trait in an
automated yet sensible way. Each edge of the graph represents

a cluster of haplotypes that are tested for association with the
trait (further described below).

Ron et al.24 presented an algorithm for fitting inhomoge-
neous VLMCs. Their algorithm is applied to cursive writing
and spoken words, and only one letter or word is modeled at
a time. I give a brief description of the algorithm, along with
details of modifications I made to enable the algorithm to
handle much longer sequences of information and to focus on
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Table 1

Haplotype Counts for Figure 2A

HAPLOTYPE

COUNT

Total Case Control

1111 21 12 9
1112 79 43 36
1122 95 43 52
1221 116 59 57
2111 25 14 11
2112 112 60 52
2122 152 69 83

Figure 4 P values for tests of association between the region
markers and cystic fibrosis: Fisher’s exact single-marker allelic test P
values (�); graph-edge test P values (#).

obtaining a parsimonious model. The reader is referred to Ron
et al.24 for more-detailed information.

To describe my algorithm, I will first make some comments
and provide notation. The directed acyclic graph representing
the VLMC model has the property of being leveled.24 Each
node of the graph has a level that corresponds to a position
in the sequence of markers. At level 1, there is only one node,
which does not itself contain information. A node at level d
( , where D is the number of markers) rep-d p 2,3,…,D � 1
resents a history or collection of possible allele sequences (i.e.,
haplotypes) up to and including marker . Each edge orig-d � 1
inating from a node at level d ( ) terminates at ad p 1,2,…,D
node in level . An edge marked by allele a and originatingd � 1
from node x at level d represents the event of allele a at marker
d following the history represented by node x and thus also
represents a collection of haplotypes involving alleles at mark-
ers up to and including marker d.

When two edges are directed into the same node, the history
of this node represents a union of the two histories represented
by the incoming edges. This feature represents historical re-
combination. In terms of the probabilistic model, this repre-
sents a Markov (loss of memory) property. For example, con-
sider node 3.1 in figure 2B. This node represents the collection

where represents the haplotype 2,1 (allele 2 atx p {x ,x } x1 2 1

the first marker and allele 1 at the second), whereas rep-x2

resents the haplotype 1,1. Let A be the random variable rep-
resenting the sequence of alleles at markers 3 and 4. Given the
graph, ; that is, the conditionalP(AFx ) p P(AFx ) p P(AFx)1 2

probability of A given x does not depend on whether the alleles
at the previous two markers were given by or .x x1 2

My algorithm starts by taking phased haplotype data (with-
out regard to trait status) and putting it into a tree graph. Each
path from the root to a terminal node of the tree represents a
distinct observed haplotype. Figure 2A shows an example that
corresponds to the data in table 1 (which consists of 300 case
and 300 control haplotypes on four biallelic markers). Starting
from the root of the tree (level 1) and working down the levels,
the algorithm checks to see if nodes at the same level can be
merged. Merging of nodes corresponds to recognizing decay
of memory in the model. Two nodes are merged if the tran-
sition probabilities corresponding to all downstream (descen-
dant) nodes are sufficiently similar. In the appendix, I give my
criterion for determining which nodes to merge, which is sim-
ilar to that of Ron et al.24 Figure 2B shows the graph from
figure 2A after merging has occurred. Note that the decision
to merge nodes 3.1 and 3.3 in this graph also results in the

downstream merging of nodes 4.1 and 4.4 and of nodes 4.2
and 4.5.

Merging proceeds at each level in turn, and all nodes at the
final level are always merged. Once the model has been fitted
to the combined (case and control) data, one can go through
the model to determine specific case and control counts (or
distribution of other trait variables) that correspond to each
edge. Given any haplotype sequence, one can follow its path
through the graph by following the sequence of alleles. For
example, in the graph in figure 2B, haplotype 2112 corre-
sponds to the path from node 1.1 through nodes 2.2, 3.1, and
4.1 to node 5.1 (via the dashed edge between nodes 4.1 and
5.1).

At each edge of the graph, one can test for association with
trait status. For example, consider the edge from node 3.1 to
node 4.1 (fig. 2B) with the data in table 1. This edge corre-
sponds to haplotypes of the form *11*, where the asterisk (*)
represents an arbitrary allele, with 129 case haplotypes and
108 control haplotypes in total, compared with 171 case and
192 control haplotypes not on this edge, which results in a P
value of .095 with Fisher’s exact test.

Not every edge of the graph needs to be tested, since many
edges represent the same or similar haplotype clusters, whereas
other edges have counts that are too low to be worth testing.
Haplotype clusters change at points of splitting or merging in
the graph. For example, the split at node 2.1 of figure 2B
divides the haplotype cluster consisting of haplotypes of the
form 1*** into a cluster containing haplotypes of the form
11** and a cluster containing haplotypes of the form 12**.
The merge at node 3.1 of figure 2B combines a cluster con-
taining haplotypes of the form 11** with a cluster containing
haplotypes of the form 21**. Call an edge a “splitting edge”
if it is one of two or more edges directed out of a node, whereas
an edge is called a “merging edge” if it is one of two or more
edges directed into a node. An edge that is not splitting or
merging represents exactly the same haplotype cluster as one
or more other edges; for example, the edge from node 3.2 to
node 4.3 in figure 2B represents the same cluster (haplotype
1221) as does the edge from node 2.1 to node 3.2 or the edge
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Figure 5 Model fitted to the cystic fibrosis RFLP data. Solid lines represent allele 1; dashed lines represent allele 2. The nodes are shown
as circles, with area proportional to the total count for the node.

Figure 6 P values for tests of association between the RFLP markers and cystic fibrosis: Fisher’s exact single marker allelic test P values
(�); graph-edge test P values (#).

from node 4.3 to node 5.1. A splitting edge that is not also a
merging edge represents either the same haplotype cluster as
some merging edge farther on in the graph, or, if further split-
ting occurs before merging, represents a supercluster that com-
bines two or more haplotype clusters represented by merging
edges farther on in the graph. Such superclusters tend to reflect
the sequential nature of the VLMC model rather than inherent
biological phenomena. On the other hand, merging reflects
historical recombination. Thus, merging edges tend to more
fully reflect the haplotype clusters of biological interest than
do splitting edges.

I test only merging edges (edges that merge with others into
a node). Edges with very low counts are ignored in this merging
criterion, so that if an edge with a large count merges with an
edge with a count of just 1 or 2 and does not merge with any
other edges, I do not test either of these edges. In figure 1, I
would test the haplotype clusters corresponding to the edges
marked with “T” (assuming all edge counts are sufficiently
high). In this way, I test all haplotype clusters found in the
graph, except that superclusters that split before merging will
not themselves be tested, although their component subclusters
are tested. For example, in block 2 of figure 1, haplotypes 112
and 121 are tested individually, but the edge containing both
haplotypes together is not tested. In figure 1, the tests include
all haplotypes within each haplotype block. In addition, hap-
lotype clusters *211 (where the asterisk [*] denotes an arbi-

trary allele) and **11 in block 1 are tested. These clusters
indicate that the algorithm is responding to apparent historical
recombination between markers 1 and 2 and between markers
2 and 3 within this block. Also, in the results presented here,
I do not test an edge if the total count for the edge is !50. (In
general, the threshold chosen should depend on the strength
of signal expected—for a low frequency haplotype with high
penetrance, a small threshold should be used, whereas a higher
threshold is appropriate for common haplotypes with low pen-
etrance.) Figure 2B shows the edges to be tested in that graph.
Note that the solid edge from node 4.1 to node 5.1 is not
tested, even though it is a merging edge, because it has a count
of !50.

Fisher’s exact test is particularly appropriate for testing,
since it is exact rather than asymptotic and can deal with the
small counts that often occur in haplotype data. However,
provided that the edges with low counts are not tested, Pear-
son’s x2 test is also appropriate. In the results presented here,
I use Fisher’s exact test because I wish to accurately compare
very small P values.

For comparison with results from my method, I present
results from single-marker and haplotypic tests. The single-
marker tests are allelic tests performed using Fisher’s exact
test, with one test per marker. The haplotypic tests use the
same estimated haplotypes that go into my model. I chose not
to use EM-based haplotypic tests that would sum over possible
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Figure 7 P values for tests of association between the genetic markers and Crohn disease: Fisher’s exact single marker test P values (�);
graph-edge test P values from the model fit to markers 1–60 (�) and from the model fit to markers 44–103 (#).

haplotypes, since the haplotype phases are fairly well deter-
mined by family data in the two data sets considered. As with
tests using my model, I test individual haplotypes and do not
consider a haplotype if the total count (cases and controls) for
the haplotype is !50, to reduce the number of tests considered.
I note that, for these data, the same smallest P values are found
when testing all haplotypes or graph edges (including those
with count !50), even though many more tests are required.

To investigate the type I error of my method and to obtain
thresholds for experimentwise significance, I permuted case-
control status to simulate data under the null hypothesis of
no marker-trait association. For each permutation, P values
were calculated using the new case-control values. Note that
the graph itself stays the same in each permutation, since it is
not dependent on case-control status. Similarly, the same set
of edges satisfies the criteria for testing in each permutation.

Software

I have implemented the algorithm in R, and my code is freely
available from the HapVLMC Web site. This prototype im-
plementation has suboptimal memory handling so can only
process ∼60 markers at a time; however, we are developing
an improved version that should be able to handle an unlimited
number of markers. Note that the computational time for the
merging algorithm is approximately linear in relation to the
number of markers, so that, for large numbers of markers, the
most important programming consideration is efficient use of
memory.

Cystic Fibrosis Data

I considered data consisting of 94 cystic fibrosis (MIM
219700) haplotypes and 92 control haplotypes.25 I used
PHASE v2.1.126,27 to estimate missing data and unresolved
phase. I analyzed the data two ways, one using the nine hap-
lotype regions (each region gives a multiallelic marker with up
to eight alleles) defined by Kerem et al.,25 and the other using
the 23 biallelic RFLP markers directly.

Crohn Disease Data

I considered data consisting of 258 individuals with Crohn
disease (MIM 266600) and their parents, genotyped on 103

SNPs in a 500-kb region on chromosome 5q31.28 I used Mer-
lin29 to determine haplotype phase for the trios, followed by
PHASE v2.1.1 to estimate missing genotypes and unresolved
phase. I split the parental haplotypes into 258 haplotypes trans-
mitted to the affected offspring (the “case” haplotypes) and
258 untransmitted haplotypes (the “controls”). The 5q31 re-
gion has extensive LD, so it has proven difficult to localize the
causative mutations for Crohn disease in this region.30

Results

Cystic Fibrosis Data

The cystic fibrosis data have a very strong signal, so
test P values tend to be extremely small. Figure 3 shows
the graph fitted to the nine multiallelic regional markers.
The results of the graph-edge tests are shown in figure
4, with results of single-marker allelic tests for compar-
ison. Some levels have more than one P value, because
more than one edge was tested. Other levels have no
graph-edge P values, since no edges at those levels sat-
isfied the testing criteria, either because the edges had
insufficient counts or because LD is sufficiently strong
that the corresponding clusters of haplotypes are tested
elsewhere.

The smallest graph-edge test P value was �231.9 # 10
(from nine tests), whereas the smallest single-marker test
P value was . For comparison, I ran sliding-�163.5 # 10
window haplotype tests of all window sizes from 2 to
9, testing each haplotype individually with Fisher’s exact
test. The smallest of these P values was �231.9 # 10
(from a total of 26 tests, excluding tests of haplotypes
with count !50).

Figure 5 shows the graph fitted to the 23 biallelic RFLP
markers. The results of the graph-edge tests (and single-
marker allelic tests for comparison) are shown in fig-
ure 6. The smallest graph-edge test P value was 3.9 #

(from 14 tests), whereas the smallest single-marker�2210
test P value was . For comparison, I again�156.3 # 10
ran sliding-window haplotype tests of all possible win-
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Table 2

Haplotypes and Frequencies for
Markers 7–22 for Most-
Significant Edge of Cystic
Fibrosis RFLP Graph

Haplotype Frequency

2111221212112111 25
2111221212112122 22
2111221212112121 1
1111221212112122 10
1111221212112111 7
1111221212112121 4
1211221212112111 1
1211221212112121 1
1211221212112122 2
1222221212112122 1
2122112111222122 1
1222112111222122 1
1222112111222111 1

NOTE.—Markers 11–20 exhibit
a common haplotype, 2212121121
(shown in bold italics).

dow sizes. The smallest of these P values was 1.9 #
(from a total of 199 tests, excluding tests of hap-�2310

lotypes with count !50). In 10,000 permutations of case-
control status, I found that the 5th percentile of minimum
graph-edge test P values was .008, which is much greater
than , so the graph-edge test result is clearly�223.9 # 10
significant after correcting for multiple testing. Also, the
proportion of P values that fall below .05 was 0.041, so
that the test is shown not to be anticonservative. In fact,
since Fisher’s exact test was used, it is redundant to check
false-positive error rates, since Fisher’s exact test is always
exact or slightly conservative.

To investigate the haplotypes underlying a significant
result, one can look at which haplotypes pass through the
corresponding edge of the graph. Table 2 shows the hap-
lotypes passing through the most significant edge of the
graph that is based on the RFLP markers (the edge cor-
responding to allele 2 and originating at node 2 of level
19 in figure 5; this is the dashed edge coming out of the
second-to-lowest node at level 19 and connecting to the
highest node at level 20). One can look at any window
of markers, but I chose here to look at markers 7–22,
since adding further markers to either end of this window
merely increases the number of unique haplotypes ob-
served without adding recognizable pattern. Markers 11–
20 exhibit a common haplotype, 2212121121 (shown in
bold italics in table 2), shared by all but three haplotypes
passing through this edge. It is this haplotype that is driv-
ing the results in both the RFLP and region-coding anal-
yses. The deletion, which appears to be the causeDF508

of 70% of cystic fibrosis cases, is located between RFLP
markers 17 and 18 and is found almost exclusively in this
particular haplotype background.25

It is unwise to make too much of comparisons of P
values that are this small; however, these results dem-
onstrate that my method is competitive with standard
single-marker and haplotypic tests on these data. My
method does not require the specification of a haplotype-
window size yet involves only a fairly small number of
tests.

Crohn Disease Data

The prototype software implementation of my algo-
rithm could not handle all 103 SNP markers at once,
so I split the data into two overlapping sets: SNPs 1–60
and SNPs 44–103. Figure 7 shows the graph-edge test
P values and single-marker allelic test P values.

The smallest single-marker test P value was 3.8 #
at marker 28. This is similar to results obtained�610

with a TDT test (smallest P value , also at�67 # 10
marker 28).31 The smallest graph-edge test P value was

(from tests). In 1,000 permutations�62.0 # 10 81 � 61
of case-control status, I found that the 5th percentile of
minimum graph-edge test P values was .001, which is

much higher than , so the graph-edge test�62.0 # 10
result is clearly significant after correcting for multiple
testing. For comparison, I ran sliding-window haplotype
tests of all window sizes, of which the smallest P value
was (from 8,543 tests, excluding tests of hap-�75.0 # 10
lotypes with count !50). Although one haplotypic test
found a stronger signal than did my method, a huge
number of haplotypes were tested to obtain that result.

Rioux et al.31 found a single extended-risk haplotype,
which is the red (top) haplotype in figure 2a of Daly
et al.28 Daly et al.28 provide haplotype-block informa-
tion for the SNPs in this study. There is extensive LD
throughout the region, with the strongest LD stretching
from block 4 (starting at SNP 25) through block 9 (end-
ing at SNP 91). It is noteworthy that my most significant
result is found on an edge at level 48 of the graph based
on SNPs 44–103 and thus represents SNP 91, or the end
of this region of strongest LD. My tests are restricted to
edges that merge; since merging represents historical re-
combination, my tests will tend to occur at the end of
haplotype blocks, with the tested edges corresponding
to clusters of haplotypes within those blocks. I examined
the haplotypes passing through the most significant edge,
considering markers 44–91 but excluding markers 74,
77, and 85, which fall between blocks or for which either
allele may be present in the risk haplotype discussed by
Rioux et al.31 Of 134 haplotypes on this edge, 98 were
identical with the risk haplotype of Rioux et al.31 on
these markers, whereas only 3 haplotypes on this edge
differed in more than four markers from the risk hap-
lotype. In contrast, for haplotypes not on this edge, only
6 (of 382) differed from the risk haplotype in four or
fewer markers. Thus, this graph-edge test is detecting
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the signal found by Rioux et al.31 but without requiring
definition of haplotype-block structure or extensive hap-
lotype testing.

To investigate the impact of SNP selection on my
method, I used the method of Carlson et al.,32 with a
threshold of , to select 54 tagging SNPs (tSNPs).2r 1 0.8
The graph fit to the tSNP data is similar to those fit to
the unselected data, with up to 15 nodes per level (the
graphs fit to the unselected data on SNPs 1–60 and on
SNPs 44–103 have up to 17 and 18 nodes per level,
respectively). The smallest graph-edge test P value is

(from 69 tests). From these results, it seems�61.2 # 10
that, although the selection of tSNPs is not necessary for
the success of my method, it is not detrimental either.

Discussion

I have presented a method for multilocus analysis of
haplotype data and have demonstrated, through appli-
cation to two published data sets, that it is competitive
with standard haplotype tests. A major advantage of my
method is that it is adaptive to LD, so that there is no
need to specify haplotype blocks or a window size for
haplotype tests.

My method is computationally feasible for large data
sets. The most computationally demanding part is fit-
ting a graph model with the merging process; however,
the algorithm is approximately linear in the number of
markers and approximately quadratic in the number
of nodes per level. The number of nodes per level is
bounded by the number of haplotypes, so, with appro-
priate implementation (which my collaborator and I are
developing), it should scale to hundreds of thousands of
markers and thousands of individuals. Once the fitting
is complete, a variety of tests can be performed, with
minor computational effort.

Each P value produced by the method is exact if
Fisher’s exact test is used and is at least robust to low
haplotype frequencies if Pearson’s x2 test is used with
appropriate thresholding. If a single P value is desired
to summarize evidence for association over a region or
to obtain a threshold for experimentwise significance,
permutation testing can be used. At each iteration of the
permutation procedure, trait status would be permuted
among individuals. Fortunately, since the graph is fitted
without regard to trait status, the only part of the pro-
cedure that would need to be repeated at each iteration
is the testing of each eligible edge, which is computa-
tionally fast.

The method is very flexible in terms of data type. It
is suitable for multiallelic markers (such as microsatel-
lites) as well as biallelic markers (such as SNPs), as dem-
onstrated through analysis of the cystic fibrosis data. A
reasonably large number of individuals is required to
obtain a graph that models the underlying LD structures

fully; however, the model can be fit with small numbers
of individuals and the tests will still be valid, although
not as powerful. With just 100 individuals (200 haplo-
types) in the cystic fibrosis data, the method performed
well.

Phased data with imputed missing values are required
as input; however, this is becoming less of an issue. Good
haplotype-phasing programs are now available, with im-
proved programs being developed33 to handle thousands
of markers. Moreover, it may not be long before mo-
lecular haplotyping is cost-effective.34 An alternative to
use of a single estimated haplotype pair for each indi-
vidual is to take into account all possible haplotype pairs
consistent with each individual’s genotype, weighted by
the probability of the haplotype pair given the genotype.
To do so, haplotype counts are replaced by haplotype
weights, and permutation must be used to obtain valid
P values.35 Another option is to fit a model by using
genotypic data rather than haplotypes and by treating
each genotype as an allele. This results in a genotypic-
based test that may be more suitable for some disease
models than the allelic-based tests I have used here. On
the other hand, use of genotypes effectively halves the
sample size (each individual has two haplotypes but one
multilocus genotype) and results in a less parsimonious
graph.

A feature of the fitted graph models is that they start
with a single node and build up over the first few levels
to a number of nodes per level that reflects the underly-
ing number of ancestral haplotypes in the region. In the
final levels of the graph, the number of nodes again
decreases because of lack of information to distinguish
differences between nodes. These features reflect the re-
duced amounts of haplotypic information available at
the ends of the genotyped region. Thus, in selecting
markers to genotype in a region of interest, it is a good
idea to extend the genotyping a little beyond the ends
of the region on each side.

The core of my method is the fitting of a VLMC graph
to the haplotype data without regard for trait status. I
modified the algorithm of Ron et al.24 to fit the graph.
Ron et al.24 present theoretical results that show that the
fitted and true models are, in some sense, close. I leave
such results on my algorithm for further work but em-
phasize that, since the model is fit without regard to trait
status, the validity of the association tests does not de-
pend on finding the true model.

The fitted graphs can be used with many different
types of trait data. In this study, I have focused on the
application of the graphs to case-control association test-
ing; however, the graphs can also be used, for example,
to test for association with quantitative traits via analysis
of variance (ANOVA) or related nonparametric meth-
ods, and covariates could be added through the use of
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generalized linear models (logistic regression for binary
traits).
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Appendix A

Merging Algorithm

The similarity score of two nodes at level of thed � 1
graph is defined as follows. Let be the haplotype countnx

for node x and be the count for node y. For alleleny

at marker d, let be the count of those haplo-a n (a )d x d

types that start with the sequences given by the history
of node x followed by allele at the marker d; similarly,ad

for node y. Now continue, letting be then (a ) n (a a )y d x d d�1

count for allele at marker following allelea d � 1d�1

at marker d, following the sequences given by thead

history of x. Similarly and ,n (a a a ) n (a a a )x d d�1 d�2 y d d�1 d�2

and so on. The observed conditional probability differ-
ence for the sequence isa a … ad d�1 d�k

diff (a a … a )xy d d�1 d�k

n (a a … a ) n (a a … a )x d d�1 d�k y d d�1 d�kp � .F Fn nx y

The similarity score for x and y is the maximum over
and of the observedk p 0,1,2,3, … ,D � d a a … ad d�1 d�k

conditional probability difference. The function “Simi-
lar” in the work of Ron et al.24 can be used (with slight
modification) to efficiently obtain this score.

In general, the algorithm merges nodes x and y if their
score is less than a cutoff a (which corresponds to m/2
in the work of Ron et al.24). I allow a to be a function
of the node counts. This is because a node x with small
count will have high variability in the observed condi-
tional probability and hence will ben (a a … a )/nx d d�1 d�k x

unlikely to have a score less than a fixed cutoff for a
node y, even if x and y represent the same conditional
probability distribution. Thus, to avoid having the graph
with excess numbers of small nodes at each level, with
consequent loss of power, the algorithm needs to be less
rigorous with small nodes. My choice for a is �1(n �x

.�1 1/2n )y

To justify this choice of cutoff a, assume that the two
subtrees (i.e., the nodes x and y with their descendants)
are conditionally independent, given the node counts

and , and are generated from the same conditionaln nx y

probability distributions (so that these are nodes that

should be merged). When an allele sequence ada …d�1

is considered, the variance of isa diff (a a … a )d�k xy d d�1 d�k

the variance of plus the variance ofn (a a … a )/nx d d�1 d�k x

. This variance is maximized when then (a a … a )/ny d d�1 d�k y

true conditional probabilities are one-half, in which case
the variance is

0.5(1 � 0.5) 0.5(1 � 0.5)
� ,

n nx y

which equals

�1 �1n � nx y .
4

Thus, the maximal standard deviation of diff (a a …xy d d�1

is . Testing of multiple allele se-�1 �1 1/2a ) 0.5(n � n )d�k x y

quences adds variability; however, the tests are highly
correlated. My choice of cutoff a is twice this SD. In
limited simulations comparing subtrees generated from
the same conditional probability distributions, I found
that the 90th percentile of the similarity score tends to
approximate (data not shown). Thus,�1 �1 1/2a p (n � n )x y

a high proportion of subtrees with the same probability
distribution will be merged, as they should be.

To ensure that the most strongly supported merges are
made, I calculate the score between all pairs of nodes at
a level and merge the pair with the lowest score that is
below the corresponding cutoff. If a merge occurs, scores
are calculated between the new merged node and all
other nodes, and I again merge the pair with the lowest
score that is below the corresponding cutoff. This pro-
cess is continued until no more merges are possible.

As an illustration, consider the tree graph shown in
figure 2A. I start by considering merging nodes 2.1 and
2.2. The similarity cutoff for these nodes is

1

21 1
� p 0.082 .( )311 289

I compare the transition probability for edge 1 from each
of these nodes and find that it is

195
p 0.627

311

for node 2.1 but is

289
p 1

289

for node 2.2, with a difference of 0.373. Thus, the sim-
ilarity score for these two nodes is at least 0.373, which
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exceeds the cutoff, and these two nodes will not be
merged.

At level 3, I find that the scores for the pairs 3.1/3.2
and 3.2/3.3 exceed the corresponding cutoffs. I describe
calculation of the similarity score for nodes 3.1 and 3.3
in detail. The cutoff for these nodes is

1

21 1
� p 0.093 .( )195 289

The observed conditional probability difference for these
nodes and the suffix isa p 13

100 137
� p 0.039 .F F195 289

The observed probability difference for is alsoa p 23

0.039. When descendants of these nodes are examined,
the observed conditional probability difference for suffix

isa p 1,a p 13 4

21 25
� p 0.021 ;F F195 289

for , it isa p 1,a p 23 4

79 112
� p 0.018 ;F F195 289

and, for , it isa p 2,a p 23 4

95 152
� p 0.039 .F F195 289

Thus, the similarity score for nodes 3.1 and 3.3 is
, whichmax (0.039,0.039,0.021,0.018,0.039) p 0.039

is less than the cutoff, so the merge can occur. Figure
2B shows the resultant graph. I would continue to look
for acceptable merges at level 4 of the new graph (it
turns out that there are no further acceptable merges,
except for merging all nodes at the final level).

My merging algorithm described above closely follows
the algorithm of Ron et al.,24 with two differences. My
cutoff for considering merges is a function of the node
counts rather than a fixed value. This ensures that low-
frequency haplotypes are continually merged into the
graph, providing parsimony and ensuring that the graph
does not become increasingly spread out over the course
of a long sequence of markers. Rather than considering
each pair of nodes at a level in turn and merging them

if their score is less than the cutoff, I consider all pairs
of nodes at once and first merge those pairs that are
most similar, subject to the appropriate cutoffs. This en-
sures that the best merges are made first, rather than
allowing borderline merges first that might then rule out
other merges that were more strongly supported by the
data.

Web Resources
The URLs for data presented herein are as follows:

HapVLMC, http://www.stat.auckland.ac.nz/˜browning/HapVLMC/
index.htm (for R code for implementing the proposed method)

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm
.nih.gov/Omim/ (for cystic fibrosis and Crohn disease)
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